To better understand the application of droplet impingement in industry and agriculture, in this paper, the coupled level set and volume of fluid (CLSVOF) method is applied to study droplet oblique impact on a dynamic liquid film. The conclusions are the following: the downstream crown height increases and then decreases as the impact angle increases, whereas upstream crown height and spreading length decrease significantly; moreover, the spreading length and upstream crown height increase with the increase of film velocity, while the downstream crown height decreases instead. The increase of gas density inhibits both upstream and downstream crowns. When the fluid viscosity decreases or the impact velocity increases, the crown height increases significantly, which easily leads to crown rupture or droplet splash. The increase in impact velocity leads to an increase in spreading length; however, viscosity has almost no effect on the spreading length.