The collapse of engineering structures can cause significant casualties and have negative social effects. Collapse accident investigation can elucidate the potential causes and mechanisms of the collapse accident, thus remediating future structural collapse and enhancing the resilience. However, there are some obstacles to investigating complicated collapse accidents using conventional methods. For example, the out-syncs between on-site investigation and simulation analysis are intractable and can make discovering the cause of collapse accidents difficult. Hence, a digital twin-based investigation method for collapse accidents was proposed. First, basic virtual digital building models are established using real-world information. Then, after mapping the data from the real world into the virtual space, the corresponding highly realistic multistage models before and after the building collapse accident are constructed and synchronized. Using the digital twin method, investigators with multidisciplinary knowledge can efficiently integrate, update, and check the models. Finally, the potential collapse mechanism was revealed with the assistance of the corresponding models. To demonstrate the effectiveness of the proposed digital twin-based investigation method, a real collapse accident investigation is utilized as an example. These results validated our method.