“…Although many studies have been performed to consider computational techniques for different models for different approaches, it is essential to improve the past research on computational methods (Mahian et al , 2019; Dogonchi et al , 2018; Izadi et al , 2018; Sheremet et al , 2018; Sheremet et al , 2017; Ellahi et al , 2016; Pop et al , 2016; Dinarvand et al , 2016; Bondareva et al , 2015; Dinarvand et al , 2015; Izadi et al , 2020; Miroshnichenko et al , 2020; Bondareva et al , 2020; Loenko and Sheremet, 2020; Sheremet et al , 2019; Astanina et al , 2019; Gibanov and Sheremet, 2019; Miroshnichenko et al , 2018; Sheremet et al , 2018; Bondareva et al , 2018; Chamkha et al , 2020; Mehryan et al , 2020; Krishna et al , 2020; Mansoury et al , 2020; Sadeghi et al , 2020; Dogonchi et al , 2020; Ghalambaz et al , 2020; Ishak et al , 2020; Rejvani et al , 2019; Alsabery et al , 2019; Mehryan et al , 2019; Hoseinzadeh et al , 2019; Taamneh et al , 2019; Raza et al , 2019). The overall strategy considered in this study was to couple the LES with the BMH soot model through a non-premixed flamelet combustion model for the study of soot evolution process in a diffusion flame for three different configurations at an average stain rate of 4,100 (s −1 ) to understand soot dynamics study such as SVF and the various stages of soot formation such as soot nucleation rate, coagulation rate, soot surface oxidation rate and soot surface growth rate.…”