Abstract-A fast technique based on the Poggio, Miller, Chang, Harrington and Wu (PMCHW) formulation and the precorrected-FFT method is presented for accurate and efficient analysis of electromagnetic transmission through dielectric radomes of arbitrary shape (including airborne radomes). The method of moments is applied to solve the integral equations in which the surfaces of the radomes are modeled using surface triangular patches and the integral equations are converted into a linear system in terms of the equivalent electric and magnetic surface currents. Next, the precorrected-FFT method, a fast approach associated with O(N 1.5 log N ) or less complexity, is used to eliminate the requirement of generating and storing the square impedance matrix and to speed up the matrix-vector product in each iteration of the iterative solution. Numerical results are presented to validate the implementation and illustrate the accuracy of the method.