Flow field performance tests of submarine models with cross-rudder and X-rudder stern control surfaces were conducted to study X-rudders’ performance in non-uniform flow fields. The tests compared performance parameters such as resistance, lateral steering force, yaw moment, stern velocity field, and flow field inhomogeneity coefficient under low- and high-speed conditions. The test results show that, at low speed, the resistance of the X-rudder submarine is smaller than that of the cross-rudder one at the same rudder angle. In contrast, at high speed, the resistance of the cross-rudder submarine is smaller than that of the X-rudder submarine. Under low- and high-speed conditions, the X-rudder’s lateral steering force and yaw moment are larger than those of the cross rudder at the same rudder angle. The superiority of the maneuverability of the X-rudder becomes more apparent with increasing rudder angle. At a rudder angle of 10°, the X-rudder’s lateral steering force and yaw moment are about two times larger than the cross rudder’s. In the small-radius area of the propeller plane, the inhomogeneity coefficient of the X-rudder is generally smaller than that of the cross rudder. This is probably because the cross-rudder stern control surfaces have fixed stabilizers with flaps, and the X-rudder stern control surfaces are all-moving, with a small fixed part next to the submarine. This test provides a reference for designing the stern control surface of low-noise submarines.