Summary
In this paper, an inverse complementarity power iteration method (ICPIM) for solving eigenvalue complementarity problems (EiCPs) is proposed. Previously, the complementarity power iteration method (CPIM) for solving EiCPs was designed based on the projection onto the convex cone K. In the new algorithm, a strongly monotone linear complementarity problem over the convex cone K is needed to be solved at each iteration. It is shown that, for the symmetric EiCPs, the CPIM can be interpreted as the well‐known conditional gradient method, which requires only linear optimization steps over a well‐suited domain. Moreover, the ICPIM is closely related to the successive quadratic programming (SQP) via renormalization of iterates. The global convergence of these two algorithms is established by defining two nonnegative merit functions with zero global minimum on the solution set of the symmetric EiCP. Finally, some numerical simulations are included to evaluate the efficiency of the proposed algorithms.