Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract:In this paper, the famous Klein-Gordon-Zakharov equations are firstly generalized, the new special types of Klein-Gordon-Zakharov equations with the positive fractional power terms (gKGZE) are presented. In order to derive the exact solutions of new special gKGZE, the subsidiary higher order ordinary differential equations (sub-ODEs) with the positive fractional power terms are introduced, and with the aids of the Sub-ODE, the exact solutions of three special types of the gKGZE are derived, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of gKGZE satisfy certain constraint conditions.
In this article, we propose an exponential wave integrator sine pseudospectral (EWI‐SP) method for solving the Klein–Gordon–Zakharov (KGZ) system. The numerical method is based on a Deuflhard‐type exponential wave integrator for temporal integrations and the sine pseudospectral method for spatial discretizations. The scheme is fully explicit, time reversible and very efficient due to the fast algorithm. Rigorous finite time error estimates are established for the EWI‐SP method in energy space with no CFL‐type conditions which show that the method has second order accuracy in time and spectral accuracy in space. Extensive numerical experiments and comparisons are done to confirm the theoretical studies. Numerical results suggest the EWI‐SP allows large time steps and mesh size in practical computing. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 266–291, 2016
Two new difference schemes are proposed for an initial-boundary-value problem of the Klein-Gordon-Zakharov (KGZ) equations. They have the advantage that there is a discrete energy which is conserved. Their stability and convergence of difference solutions are proved in order O(ℎ 2 + 2 ) on the basis of the prior estimates. Results of numerical experiments demonstrate the efficiency of the new schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.