Abstract. This work presents a 3D numerical study of the bubble generation process into a bubble generator obtained with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7, and its comparison with experimental data reproducing the same conditions [1]. The bubble generator is formed by two perpendicular capillaries in which liquid and gas are injected at perpendicular directions into a 1 mm internal diameter capillary T-junction with a total length of 10 mm. The fluids used in experiments and CFD simulations are air and water, both of them considered incompressible and isothermal, at a room temperature of 25 • . A total of 23 different cases are studied for different injection conditions, and results between numerical simulations and experiments are compared.In this first part of the analysis, we focus on the flow pattern regimes and the dynamics of the bubble generation process. In addition to the new numerical simulations presented here, a new model has been used to predict the bubble generation frequency and tested with both experimental and numerical data. Results on bubble generation frequency are also presented by means of the non-dimensional Strouhal number. Same types of patterns, bubble and slug flow regimes, are obtained in simulations and experiments. In order to perform an exhaustive validation and comparison of numerical simulations with experimental data, several parameters have been selected: bubble velocity, volumetric void fraction, bubble generation frequency, Strouhal number and bubble equivalent diameter. Numerical simulations agree qualitatively, but not always quantitatively, with experimental results.