International audienceIn a recent study, an original formulation for the mass transfer between phases has been proposed to study one-dimensional inviscid cavitating tube problems. This mass transfer term appears explicitly as a source term of a void ratio transport-equation model in the framework of the homogenous mixture approach. Based on this generic form, a two-dimensional preconditioned Navier-Stokes one-fluid solver is developed to perform realistic cavitating flows. Numerical results are given for various inviscid cases (underwater explosion, bubble collapse) and unsteady sheet cavitation developing along Venturi geometries at high Reynolds number. Comparisons with experimental data (concerning void ratio and velocity profiles, pressure fluctuations) and with a 3-equation model are presented