Solid backfill coal mining technology has been widely applied in coal seams that are at risk of hard roof. Using actual measured strain-stress curves of the backfill body and the similarity theory, this study designed and employed four experimental models for physical simulation, corresponding to roof-controlled backfilling ratios of 0%, 40%, 82.5% and 97% using the geological conditions of Face No. 6304 in the Jining No. 3 coal mine-a solid backfill coal mining face under a hard roof. A non-contact strain measurement system and pressure sensors were used to monitor the deformation of the overlying strata and changes in abutment stress ahead of the face during mining of the models for varying roof-controlled backfilling ratios. The results indicated that the solid backfill body was able to support the roof. As the roof-controlled backfilling ratio was increased, the maximum subsidence of the roof and the maximum height of the cracks decreased. When the roof-controlled backfilling ratio was 82.5% or higher, the working face did not display any obvious initial fractures or periodic fractures, and both the value and the impact range of the abutment stress ahead of the face decreased.