Although spectacular advances in hydraulic fracturing, also known as fracking, have taken place and many aspects are well understood by now, the topology, geometry, and evolution of the crack system remain an enigma and mechanicians wonder: Why fracking works? Fracture mechanics of individual fluid-pressurized cracks has been clarified but the vital problem of stability of interacting hydraulic cracks escaped attention. First, based on the known shale permeability, on the known percentage of gas extraction from shale stratum, and on two key features of the measured gas outflow which are (1) the time to peak flux and (2) the halftime of flux decay, it is shown that the crack spacing must be only about 0.1 m. Attainment of such a small crack spacing requires preventing localization in parallel crack systems. Therefore, attention is subsequently focused on the classical solutions of the critical states of localization instability in a system of cooling or shrinkage cracks. Formulated is a hydrothermal analogy which makes it possible to transfer these solutions to a system of hydraulic cracks. It is concluded that if the hydraulic pressure profile along the cracks can be made almost uniform, with a steep enough pressure drop at the front, the localization instability can be avoided. To achieve this kind of profile, which is essential for obtaining crack systems dense enough to allow gas escape from a significant portion of kerogen-filled nanopores, the pumping rate (corrected for the leak rate) must not be too high and must not be increased too fast. Furthermore, numerical solutions are presented to show that an idealized system of circular equidistant vertical cracks propagating from a horizontal borehole behaves similarly. It is pointed out that one useful role of the proppants, as well as the acids that promote creation of debris in the new cracks, is to partially help to limit crack closings and thus localization. To attain the crack spacing of only 0.1 m, one must imagine formation of hierarchical progressively refined crack systems. Compared to new cracks, the system of pre-existing uncemented natural cracks or joints is shown to be slightly more prone to localization and thus of little help in producing the fine crack spacing required. So, from fracture mechanics viewpoint, what makes fracking work?–the mitigation of fracture localization instabilities. This can also improve efficiency by fracturing more shale. Besides, it is environmentally beneficial, by reducing flowback per m3 of gas. So is the reduction of seismicity caused by dynamic fracture instabilities (which are more severe in underground CO2 sequestration).
A brittle aggregate composite such as portland cement concrete or mortar is modeled in two dimensions as a system of perfectly rigid particles of various sizes separated by interface layers that are characterized hy a given force-displacement relation for the normal and tangential components. The force-displacement relation exhihits for the normal component a tensile strength limit followed hy a sudden drop of force to zero. The system of rigid particles is generated randomly. The particles arc not allowed to overlap and are generally not in contact; however. when the distance hetween the particles is less than a certain limit, a deformahle interface layer is introduced. Numerical simulation of a fracture specimen with a notch shows that the fracture front consists of an irregular band of interparticle cracks the width of which is ahout three maximum particle sizes. The interparticle cracks remain continuous and do not coalesce into a continuous line fracture until the deformation is very large. The load-displacement relation exhihits gradual softening after the peak force. with a rapid force decrease followed by a long tail of slowly decreasing force. These features qualitatively agree with observations of concrete.
Summary This work presents a new original formulation of the discrete element method (DEM) with deformable cylindrical particles. Uniform stress and strain fields are assumed to be induced in the particles under the action of contact forces. Particle deformation obtained by strain integration is taken into account in the evaluation of interparticle contact forces. The deformability of a particle yields a nonlocal contact model, it leads to the formation of new contacts, it changes the distribution of contact forces in the particle assembly, and it affects the macroscopic response of the particulate material. A numerical algorithm for the deformable DEM (DDEM) has been developed and implemented in the DEM program DEMPack. The new formulation implies only small modifications of the standard DEM algorithm. The DDEM algorithm has been verified on simple examples of an unconfined uniaxial compression of a rectangular specimen discretized with regularly spaced equal bonded particles and a square specimen represented with an irregular configuration of nonuniform‐sized bonded particles. The numerical results have been verified by a comparison with equivalent finite element method results and available analytical solutions. The micro‐macro relationships for elastic parameters have been obtained. The results have proved to have enhanced the modeling capabilities of the DDEM with respect to the standard DEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.