How to obtain dynamic parameters of rock masses quickly and precisely is a popular and difficult problem, which plays a very important part in engineering design or construction. Currently, the methods used to obtain these parameters are in situ testing method, empirical formula, and so on. However, these methods have some shortcomings, such as large investment and long construction period, which cannot obtain the dynamic parameters precisely and quickly in the engineering scale. In this study, a new method of estimating the rock parameters based on the measured field blasting vibration signals is proposed according to theory of elastic stress wave. In addition, an improved method for S-wave identification used in engineering scale was proposed and then the numerical simulation is given to verify the feasibility. Comparison of the numerical identification results and theoretical results clearly show that the improved method is available in S-wave identification with errors less than 2%. By identifying the arrival times of P and S waves, the propagation velocities of P and S waves are calculated and the parameters of rock mass can be obtained at last. Through analyzing the measured field blasting vibration signals in Fengning pumped-storage power station, the dynamic elastic modulus of rock mass inversed by vibration signals is about 2.2∼2.9 times of its static elastic modulus, while the inversed dynamic Poisson's ratio is 0.9∼0.975 times of the static.