2020
DOI: 10.1002/eng2.12151
|View full text |Cite
|
Sign up to set email alerts
|

Numerical simulation of three‐sided lid‐driven square cavity

Abstract: In this article, an incompressible, two-dimensional (2D), time-dependent Newtonian fluid flow in a square cavity is simulated using finite difference method and alternating direction implicit technique. Navier-Stokes equations are solved numerically in stream function-vorticity formulation. In order to verify the numerical solver, the one-sided lid-driven cavity is studied and the results are compared with relevant data in the literature. They were in a very good agreement. Furthermore, two distinguished unexp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 12 publications
(3 citation statements)
references
References 39 publications
0
2
0
1
Order By: Relevance
“…Abanoub et al 37 in the recent current study, the problem of lid-driven of two dimensional incompressible flow using a finite difference technique. In this work, most of industrial applications in which it is possible to be noticed the phenomenon of mixed convection by lid-driven.…”
Section: Introductionmentioning
confidence: 96%
“…Abanoub et al 37 in the recent current study, the problem of lid-driven of two dimensional incompressible flow using a finite difference technique. In this work, most of industrial applications in which it is possible to be noticed the phenomenon of mixed convection by lid-driven.…”
Section: Introductionmentioning
confidence: 96%
“…The numerical computation of the flow variables ( , , , and ) have been obtained for the current problem with the assistance of a computer software code which has been verified and validated by studying the one-sided lid-driven square cavity problem by Kamel et al [24]. The solution convergence for each Re was measured by the residual of the vorticity Eq.…”
Section: Numerical Computationsmentioning
confidence: 92%
“…Бұл теңдеуді сандық түрде шешу қиын, өйткені қысым өрісін айнымалы жылдамдықпен байланыстыратын күй теңдеуі жоқ. Жоғарыда аталған қиындықты жеңу үшін сандық шешудің бірнеше тәсілдері бар, олардың біріншісіток және құйын функциясы арқылы қысым өрісін жою [1,2]. Екінші тәсіл қарапайым айнымалыларға негізделген, бұл тәсіл мыналарды қамтиды: маркерлер мен ұяшықтар әдісі (MAC) [3], бөлшек қадам әдісі [4], қысым теңдеулерінің жартылай айқын әдісі (SIMPLE) [5] және жасанды сығымдау әдісі [6].…”
Section: кіріспеunclassified