Numerical investigations are presented for mixed convection problems in a concentric inner sinusoidal cylinder and an outer rotating circular cylinder, which were kept at constant hot and cold temperatures, respectively. The free space between the cylinders and the enclosure walls was filled with a water‐Cu nanofluid. The governing equations are formulated for velocity, pressure, and temperature formulation and are modeled in COMSOL5.2a, a partial differential equation solver based on the Galerkin finite element method. The governing parameters considered are the solid volume fraction, [0, 0.02, 0.04, and 0.06], Re (1, 25, 100, 200, and 300), and Ra (less than 104), and the inner cylinder corrugation frequencies varied from (N = 3, 6, and 9). According to the calculations, the Reynolds number, the Rayleigh number, the nanoparticle volume fraction, and the number of corrugations play an important role of forming the stream and isothermal lines, the local and the average Nusselt number inside the annulus enclosure. The average Nusselt number decreases with increasing Reynolds number and the number of corrugations, while it increases as the Rayleigh number and the volume fraction increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.