The conjugate natural convection heat transfer in a partially heated square porous enclosure had been studied numerically. The governing dimensionless equations are solved using COMSOL Multiphysics and Darcy model assumed to be used. The considering dimensionless parameters are modified Rayleigh number, finite wall thickness, thermal conductivity ratio and the heat source length. The results are presented in terms of streamlines, isotherms and local and average Nusselt number. The results indicate that; the heat transfer can be enhanced by increasing the modified Rayleigh number. When the heat source length increases, the local Nusselt number of fluid phase increases, while, a reverse behavior of the local Nusselt number along the heat source is found. As the Rayleigh number increase, the local Nusselt number for both fluid and solid phase increases, therefore, the heat transfer rate will be enhanced. On the other hand, when the thermal conductivity ratio increase, the local Nusselt number for the fluid phase increases, and the local Nusselt number along the heated wall decreases.
Numerical investigations are presented for mixed convection problems in a concentric inner sinusoidal cylinder and an outer rotating circular cylinder, which were kept at constant hot and cold temperatures, respectively. The free space between the cylinders and the enclosure walls was filled with a water‐Cu nanofluid. The governing equations are formulated for velocity, pressure, and temperature formulation and are modeled in COMSOL5.2a, a partial differential equation solver based on the Galerkin finite element method. The governing parameters considered are the solid volume fraction, [0, 0.02, 0.04, and 0.06], Re (1, 25, 100, 200, and 300), and Ra (less than 104), and the inner cylinder corrugation frequencies varied from (N = 3, 6, and 9). According to the calculations, the Reynolds number, the Rayleigh number, the nanoparticle volume fraction, and the number of corrugations play an important role of forming the stream and isothermal lines, the local and the average Nusselt number inside the annulus enclosure. The average Nusselt number decreases with increasing Reynolds number and the number of corrugations, while it increases as the Rayleigh number and the volume fraction increase.
The conjugate natural convection heat transfer in a partially heated porous enclosure had been studied numerically. The governing dimensionless equations are solved using finite element method. Classical Darcy model have been used and the considering dimensionless parameters are modified Rayleigh number (10 ≤ Ra ≤ 10 3), finite wall thickness (0.02 ≤ D ≤ 0.5), thermal conductivity ratio (0.1 ≤ Kr ≤ 10), and the aspect ratio (0.5 ≤ A≤ 10). The results are presented in terms of streamlines, isotherms and local and average Nusselt number. The results indicate that heat transfer can be enhanced by increasing the modified Rayleigh number, and thermal conductivity ratio. Wall thickness effects on the heat transfer mechanism had been studied and it is found that; as the Wall thickness increases, the conduction heat transfer mechanism will be dominated. Also, increasing aspect ratio will increase the stream function and reduced the heat transfer rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.