2006
DOI: 10.1016/j.coastaleng.2006.05.003
|View full text |Cite
|
Sign up to set email alerts
|

Numerical simulation of wave damping over porous seabeds

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
22
0

Year Published

2012
2012
2022
2022

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 41 publications
(26 citation statements)
references
References 18 publications
2
22
0
Order By: Relevance
“…The water depth d was 0.15 m. The porous bed was constructed by stones with mean diameter of 3.07 cm and the seabed thickness was 0.15 m. Figure 3 shows the comparison of the present numerical results with experimental and other numerical results. The other numerical results come from Cheng et al [7], and Karunarathna and Lin [16]. The figure shows a good agreement between the numerical results and experimental data, which indicates that the proposed numerical model can accurately simulate the wave interaction with porous seabed.…”
Section: Model Validationsupporting
confidence: 61%
“…The water depth d was 0.15 m. The porous bed was constructed by stones with mean diameter of 3.07 cm and the seabed thickness was 0.15 m. Figure 3 shows the comparison of the present numerical results with experimental and other numerical results. The other numerical results come from Cheng et al [7], and Karunarathna and Lin [16]. The figure shows a good agreement between the numerical results and experimental data, which indicates that the proposed numerical model can accurately simulate the wave interaction with porous seabed.…”
Section: Model Validationsupporting
confidence: 61%
“…(4) represent the effect of fixed porous solid skeleton, with the linear term representing the low Reynolds number flow and nonlinear term representing the high Reynolds number flow, respectively, by following Huang et al (2003;. Karunarathna and Lin (2006) had also derived various nonlinear frictional forces for the high Reynolds number flows. According to Huang et al (2003;, if the porosity w n and stone size d of the porous materials are known, the intrinsic permeability P K can be determined by the following empirical formula as   1 57 3 7 50 0 2 0 1 643 10 0 01m 1…”
Section: Equations For Flow Inside Porous Mediamentioning
confidence: 99%
“…To solve the governing equations, they employed the resistance force formulas proposed by van Gent (1995) and calibrated the linear coefficient against simple physical experiments, while keeping the inertial and original nonlinear frictional coefficients unchanged. Similarly Hsu et al (2002) used the Volume-Averaged RANS (VARANS) equations to describe the flow motion around the porous structure, and Karunarathna and Lin (2006) applied their VARANS model to study wave damping over a porous seabed. Garcia et al (2004) and Lara et al (2006) used the numerical model of Liu et al (1999) to investigate wave interactions with a low-crested permeable breakwater and validated their models with the laboratory measurements.…”
Section: Introductionmentioning
confidence: 99%
“…The phenomenon is called wave damping or energy dissipation (Karunarathna and Lin, 2006). The penetration of seabed induced the energy loss is the dominant component.…”
Section: Introductionmentioning
confidence: 99%
“…For flow through a porous and coarse sediment, the quadratic term with flow velocity and the time-dependent term are added in the original Darcy's low. It is widely applied to simulate the porous flow in the arbitrary flow regions and the wave dissipation in the wave-porous structures interaction with high permeability (Gu and Wang, 1991;Van Gent, 1995;Karunarathna and Lin, 2006).…”
Section: Introductionmentioning
confidence: 99%