Groundwater inflow into tunnels is always a salient topic in Hydrology, Hydraulic Engineering, Hydrogeology, Rock Engineering and allied sciences. In fact, tunnels particularly built below the groundwater table, often face groundwater inflows during their excavation, and even sometimes after they are put into operation. These inflows, habitually regarded as unpredictable geological hazards, cause instabilities in the surrounding rocks of tunnels, and lead to considerable damages such as injuries, loss of lives, and huge-scaled economic expenses. It is argued that groundwater conditions are of decisive significance for the design and running of tunnels. Therefore, accurate prediction or evaluation of groundwater inflows into tunnels is of paramount importance. Such prediction, although it is still challenging, has been broached by many researchers with diverse methods. However, a state-of-the-art review of these methods has not yet been presented. This paper reviews the assessment methods of groundwater inflows into tunnels built in rocky media. The results mainly include analytical, semi-analytical, empirical, semi-empirical, numerical, machine learning, and other methods used in the field. This was made possible by selecting and analysing relevant scientific articles published by various worldwide Journals. In addition, some recommendations and future trends are pointed out. This paper can provide useful references in understanding groundwater inflows prediction in different points of view and their limits in terms of applicability and accuracy.