In this paper, a new numerical method named Barycentric Lagrange interpolation-based differential quadrature method is implemented to get numerical solution of 1D and 2D coupled nonlinear Schrödinger equations. In the present study, spatial discretization is done with the aid of Barycentric Lagrange interpolation basis function. After that, a reduced system of ordinary differential equations is solved using strong stability, preserving the Runge-Kutta 43 method. In order to check the accuracy of the proposed scheme, we have used the formula of
L
∞
error norm. The matrix stability analysis method is implemented to test the proposed method’s stability, which confirms that the proposed scheme is unconditionally stable. The present scheme produces better results, and it is easy to implement to obtain numerical solutions of a class of partial differential equations.