The Cauchy problem for an elliptic partial differential equation is ill-posed. In this paper, we study a numerical method for solving the Cauchy problem. The numerical method is based on a reformulation of the Cauchy problem through an optimal control approach coupled with a regularization term which is included to treat the severe ill-conditioning of the corresponding discretized formulation. We prove convergence of the numerical method and present theoretical results for the limiting behaviors of the numerical solution as the regularization parameter approaches zero. Results from some numerical examples are reported.