2005
DOI: 10.1002/fld.822
|View full text |Cite
|
Sign up to set email alerts
|

Numerical solution of three-dimensional velocity-vorticity Navier-Stokes equations by finite difference method

Abstract: SUMMARYThis paper describes the ÿnite di erence numerical procedure for solving velocity-vorticity form of the Navier-Stokes equations in three dimensions. The velocity Poisson equations are made parabolic using the false-transient technique and are solved along with the vorticity transport equations. The parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI) procedure and are solved along with the continuity equation for velocities, thus ensuring a divergencef… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

5
20
0
1

Year Published

2005
2005
2017
2017

Publication Types

Select...
8
1

Relationship

4
5

Authors

Journals

citations
Cited by 54 publications
(26 citation statements)
references
References 38 publications
5
20
0
1
Order By: Relevance
“…(6) ~ (8), u and v are the velocities in x and y directions respectively in a computational domain Q. surrounded by a boundary Γ. We seek a solution in the domain Q., which satisfies the Dirichlet boundary conditions of velocity given as u = (, ) b ( 1 (10) and the corresponding vorticity values on the boundary can be obtained using the definition given by dv du…”
Section: Governing Equations and Boundary Conditionsmentioning
confidence: 99%
“…(6) ~ (8), u and v are the velocities in x and y directions respectively in a computational domain Q. surrounded by a boundary Γ. We seek a solution in the domain Q., which satisfies the Dirichlet boundary conditions of velocity given as u = (, ) b ( 1 (10) and the corresponding vorticity values on the boundary can be obtained using the definition given by dv du…”
Section: Governing Equations and Boundary Conditionsmentioning
confidence: 99%
“…In the present work the authors prefer to use velocity-vorticity formulation to the vorticity-stream function formulation because the dynamic variables, velocities, can be directly obtained. The velocity-vorticity form of Navier-Stokes equations first reported by Fasel [21] for stability analysis of boundary layers in two dimensions, has already been applied for the study of 3D flow problem [22], 3D natural convection problems [23,24] and recently for double diffusive mixed convection in a cavity [16]. In the present work, results are discussed for the effect of thermo-solutal buoyancy forces for (0.1 Ri 10) and (−10 N 10) on the variation of recirculatory flow patterns and heat and mass transfer in a channel with BFS at low Reynolds number.…”
Section: Introductionmentioning
confidence: 99%
“…Адаптация этого метода к эллиптическим уравнениям существенно расширяет его горизонты. Метод фиктивных переходов [8,9] (метод с использованием фиктив-ного времени), лежащий в основе нашего подхода, приводит рассматриваемое уравнение к парабо-лическому типу. Однако следует отметить, что в некоторых случаях эта техника должна применяться осторожно для задач, например, когда решение неустойчивое.…”
Section: Introductionunclassified