Nowadays, gas turbines intake jet air at high temperatures to improve the power output as much as possible. However, the excessive temperature typically puts the blade in the face of unpredictable damage. Film cooling is one of the prevailing methods applied in engineering scenarios, with the advantages of a simple structure and high cooling efficiency. This study aims to assess the uncertain effect that the three major film cooling parameters exert on the global and fixed-cord-averaged film cooling effectiveness under low, medium, and high blowing ratios br. The three input parameters include coolant hole diameter d, coolant tube inclination angle θ, and density ratio dr. The training dataset is obtained by Computational Fluid Dynamics (CFD). Moreover, a seven-layer artificial neural network (ANN) algorithm is applied to explore the complex non-linear mapping between the input flat film cooling parameters and the output fixed-cord-averaged film cooling effectiveness on the external turbine blade surface. The sensitivity experiment conducted using Monte Carlo (MC) simulation shows that the d and θ are the two most sensitive parameters in the low-blowing-ratio cases. The θ comes to be the only leading factor of sensitivity in larger blowing ratio cases. As the blowing ratio rises, the uncertainty of the three parameters d, θ, and dr all decrease. The combined effect of the three parameters is also dissected and shows that it has a more significant influence on the general cooling effectiveness than any single effect. The d has the widest variation of uncertainty interval at three blowing ratios, while the θ has the largest uncertain influence on the general cooling effectiveness. With the aforementioned results, the cooling effectiveness of the gas turbine can be furthermore enhanced.