We evaluated the effects of abomasal infusion of emulsifiers on fatty acid (FA) digestibility and milk production of lactating dairy cows. All emulsifiers examined were polysorbates, nonionic surfactants, consisting of a polyethoxylated sorbitan esterified with FA. The polysorbates tested in this study consisted of the same polyethoxylated sorbitan base but differed by the FA esterified to it. Eight rumen-cannulated multiparous cows (89 ± 13 d in milk) were assigned to a treatment sequence in 4 × 4 Latin squares with 18-d periods consisting of 7 d of washout and 11 d of infusion. Treatments were abomasal infusions of water only (CON) or 30 g/d of different emulsifiers as follows: polysorbate-C16:0 (T40), polysorbate -C18: 0+C16: 0 (T60), and polysorbate-C18:1 (T80). Emulsifiers were dissolved in water and delivered at 6-h intervals (total daily infusion was divided into 4 equal infusions per day). Cows were fed the same diet that contained (% diet dry matter) 32.1% neutral detergent fiber, 15.7% crude protein, 25.8% starch, and 3.32% FA (including 1.92% FA from a saturated FA supplement containing 34.2% C16:0 and 47.7% C18:0). The T80 treatment increased total FA digestibility compared with CON (5.40 percentage units) and T60 (3.90 percentage units) and tended to increase it compared with T40. Also, T40 tended to increase and T80 increased (4.80 percentage units) 16-carbon FA digestibility compared with CON. The T80 treatment increased 18-carbon FA digestibility compared with the other treatments. The T40 treatment tended to increase and T80 increased total FA absorption compared with CON (53 g/d) and T60 (52 g/d). Both T40 and T80 increased the absorption of 16-carbon FA compared with CON and T60. The T60 treatment did not differ from CON for any digestibility variable. Both T40 and T80 increased the yields of milk fat, 3.5% fat-corrected milk, and de novo, mixed, and preformed milk FA compared with CON. In conclusion, not all emulsifiers increased FA digestibility. Compared with CON, T80 increased the digestibility and absorption of total, 16-, and 18-carbon FA. The T40 treatment tended to increase and T80 increased total FA absorption and the yields of milk fat and 3.5% FCM compared with CON. Milk fat yield was increased by increases in de novo, mixed, and preformed milk FA. In our short-term infusion study, results suggest that the predominant FA present in the polysorbate affects its ability to improve FA digestibility. Overall, FA digestibility and absorption were improved the most when cows received the T80 treatment.