Functional clinical nutrition is an integrative science; it uses dietary strategies, functional foods and medicinal plants, as well as combinations thereof. Both functional foods and medicinal plants, whether associated or not, form nutraceuticals, which can bring benefits to health, in addition to being included in the prevention and treatment of diseases. Some functional food effects from Avena sativa L (oats), Linum usitatissimum L. (brown flaxseed), Glycine max L. (soya) and Moringa oleifera have been proposed for nutritional disorders through in vitro and in vivo tests. A formulation called a bioactive food compound (BFC) showed efficiency in the association of oats, flaxseed and soy for dyslipidemia and obesity. In this review, we discuss the effects of BFCs in other nutritional disorders, as well as the beneficial effects of M. oleifera in obesity, cardiovascular disease, diabetes mellitus type 2, metabolic syndrome, intestinal inflammatory diseases/colorectal carcinogenesis and malnutrition. In addition, we hypothesized that a BFC enriched with M. oleifera could present a synergistic effect and play a potential benefit in nutritional disorders. The traditional consumption of M. oleifera preparations can allow associations with other formulations, such as BFCs. These nutraceutical formulations can be easily accepted and can be used in sweet preparations (fruit and/or vegetable juices, fruit and/or vegetable vitamins, porridges, yogurt, cream, mousses or fruit salads, cakes and cookies) or savory (vegetable purees, soups, broths and various sauces), cooked or not. These formulations can be low-cost and easy-to-use. The association of bioactive food substances in dietary formulations can facilitate adherence to consumption and, thus, contribute to the planning of future nutritional interventions for the prevention and adjuvant treatment of the clinical conditions presented in this study. This can be extended to the general population. However, an investigation through clinical studies is needed to prove applicability in humans.