O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the “optimal zone”, and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.