2004
DOI: 10.4213/tvp226
|View full text |Cite
|
Sign up to set email alerts
|

O самоноpмиpованных суммах случайных величин и статистике Стьюдента

Abstract: В статье оценивается точность нормальной аппроксимации распреде лений некоторых нелинейных функционалов от сумм независимых слу чайных векторов. В качестве следствия получена оценка типа Берри-Эссеена с явными константами для распределений самонормированных сумм случайных величин и статистики Стьюдента. Ключевые слова и фразы: самонормированные суммы случайных величин, статистика Стьюдента.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2013
2013
2014
2014

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 22 publications
0
2
0
Order By: Relevance
“…This latter result was obtained, by a more Stein-like method, in [4,Lemma 6.3] in the case when X = R, t ∈ (2,3], and the Xi's are independent. In the case when X = R, t = 3, and the Xi's are i.i.d., inequality (11) was stated without proof in [16]; in the more general case when X = R, t ∈ (2, 4], and the Xi's are independent but not necessarily identically distributed, the bound in (11) was obtained in [15,Lemma 13], but with the larger factor t(t − 1) • 2 −t/2 in place of t − 1.…”
Section: ключевые слова и фразыmentioning
confidence: 99%
See 1 more Smart Citation
“…This latter result was obtained, by a more Stein-like method, in [4,Lemma 6.3] in the case when X = R, t ∈ (2,3], and the Xi's are independent. In the case when X = R, t = 3, and the Xi's are i.i.d., inequality (11) was stated without proof in [16]; in the more general case when X = R, t ∈ (2, 4], and the Xi's are independent but not necessarily identically distributed, the bound in (11) was obtained in [15,Lemma 13], but with the larger factor t(t − 1) • 2 −t/2 in place of t − 1.…”
Section: ключевые слова и фразыmentioning
confidence: 99%
“…. , ∞; in turn, inequality(16) follows because its left-hand side is a left (and hence lower) Riemann sum for the integralB 2 k 0…”
mentioning
confidence: 99%