Metabolic inflammation in the central nervous system might be causative for the development of overnutritioninduced metabolic syndrome and related disorders, such as obesity, leptin and insulin resistance, and type 2 diabetes. Here we investigated whether nutritive and genetic inhibition of the central IkB kinase b (IKKb)/nuclear factor-kB (NF-kB) pathway in diet-induced obese (DIO) and leptin-deficient mice improves these metabolic impairments. A known prominent inhibitor of IKKb/NF-kB signaling is the dietary flavonoid butein. We initially determined that oral, intraperitoneal, and intracerebroventricular administration of this flavonoid improved glucose tolerance and hypothalamic insulin signaling. The dosedependent glucose-lowering capacity was profound regardless of whether obesity was caused by leptin deficiency or high-fat diet (HFD). To confirm the apparent central role of IKKb/NF-kB signaling in the control of glucose and energy homeostasis, we genetically inhibited this pathway in neurons of the arcuate nucleus, one key center for control of energy homeostasis, via specific adeno-associated virus serotype 2-mediated overexpression of IkBa, which inhibits NF-kB nuclear translocation. This treatment attenuated HFD-induced body weight gain, body fat mass accumulation, increased energy expenditure, and reduced arcuate suppressor of cytokine signaling 3 expression, indicative for enhanced leptin signaling. These results reinforce a specific role of central proinflammatory IKKb/NF-kB signaling in the development and potential treatment of DIO-induced comorbidities.