2006
DOI: 10.14358/pers.72.7.799
|View full text |Cite
|
Sign up to set email alerts
|

Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery

Abstract: In this paper, we evaluate the capability of the high spatial resolution airborne Digital Airborne Imaging System (DAIS) imagery for detailed vegetation classification at the alliance level with the aid of ancillary topographic data. Image objects as minimum classification units were generated through the Fractal Net Evolution Approach (FNEA) segmentation using eCognition software. For each object, 52 features were calculated including spectral features, textures, topographic features, and geometric features. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

6
424
2
10

Year Published

2007
2007
2018
2018

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 675 publications
(442 citation statements)
references
References 51 publications
6
424
2
10
Order By: Relevance
“…The first step is the partition of the land surface into observation units. This can be done as a detailed point sample survey such as the BraunBlanquet approach (Westhoff & Van Der Maarel 1978), by field-based wall-to-wall mapping (KeelerWolf 2007), or by remote sensing (Yu et al 2006). The second step is the characterization of the vegetation found at each location.…”
Section: Introductionmentioning
confidence: 99%
“…The first step is the partition of the land surface into observation units. This can be done as a detailed point sample survey such as the BraunBlanquet approach (Westhoff & Van Der Maarel 1978), by field-based wall-to-wall mapping (KeelerWolf 2007), or by remote sensing (Yu et al 2006). The second step is the characterization of the vegetation found at each location.…”
Section: Introductionmentioning
confidence: 99%
“…A menor acurácia dos experimentos conduzidos com as imagens RapidEye pode ser atribuída à maior variabilidade espectral no interior da mesma classe de cobertura da terra Este estudo mostrou que embora a resposta espectral tenha sido reconhecida como a característica mais importante na classificação da cobertura da terra, a informação textural inerente às imagens também pode prover elementos valiosos para melhorar a classificação (Li et al 2011, Lu et al 2012. A aplicação da informação textural foi apontada em vários estudos para melhor discriminação de classes de vegetação (Yu et al 2006, Sette e Maillard 2011, Roslani et al 2013, Gomes e Maillard 2015. Sette e Maillard (2011), ao classificarem os estádios sucessionais da vegetação de Floresta Ombrófila Densa em imagens do satélite FORMOSAT-2, no sul da Bahia, obtiveram acurácia de 60,5% ao utilizar somente as bandas do visível e 91% ao incluir atributos texturais.…”
Section: Resultsunclassified
“…In the first or segmentation step, spatial objects were formed. Objects are defined as groups of adjacent pixels treated as a single entity (Hay et al, 2001 size, shape and relationship to the overall image topology (Yu et al, 2006). Objects were segmented using the fractal net evolution approach (FNEA) as implemented in the eCognition software, v4.2 (Baatz et al, 2004).…”
Section: Classification Methodologymentioning
confidence: 99%