We study shot noise in mesoscopic diffusive wires between a normal and a superconducting terminal. We particularly focus on the regime, in which the proximity-induced reentrance effect is important. We will examine the difference between a simple Boltzmann-Langevin description, which neglects induced correlations beyond the simple conductivity correction, and a full quantum calculation. In the latter approach, it turns out that two Andreev pairs propagating coherently into the normal metal are anti-correlated for E Ec, where Ec = D/L 2 is the Thouless energy. In a fork geometry the flux-sensitive suppression of the effective charge was confirmed experimentally.