Heterogeneous rare-gas clusters produced by a coexpansion of an argon/xenon mixture have been studied using synchrotron-radiation-based photoelectron spectroscopy. Both valence and Xe 4d 5/2 core-level photoelectron spectra were recorded for three different concentrations of the primary argon/xenon mixture and, for those mixtures, spectra were recorded at several different stagnation conditions. The studied size regime of the mixed clusters ranges from large, similar to those studied in an earlier paper [Phys. Rev. A 69, 031210(R) (2004)], to very small-as reflected in the cluster line shapes and chemical shifts. The chemical shifts obtained from a curve fitting procedure similar to that used in our earlier paper are discussed in terms of the mixed cluster structure which can be expected from equilibrium considerations and the Lennard-Jones parameters of the constituent atoms. Molecular dynamics simulations of the vertical polarization shifts allow more specific assignments of "on-top" sites and interfacial sites.