A quantitative determination of 2s vacancy lifetimes in surface and bulk atoms of free Ne clusters has been made. While for free atoms the 2s inner-valence hole has a ps lifetime, it reduces to 6+/-1 fs for cluster bulk atoms. For surface atoms, the lifetime is on average longer than 30 fs. The lifetime estimate was obtained from fits of high-resolution photoelectron spectra of Ne clusters. The shortening of the lifetime is attributed to the coordination dependent interatomic Coulombic decay, which is extremely sensitive to internuclear distances.
(H2O)(N) clusters generated in a supersonic expansion source with N approximately 1000 were core ionized by synchrotron radiation, giving rise to core-level photoelectron and Auger electron spectra (AES), free from charging effects. The AES is interpreted as being intermediate between the molecular and solid water spectra showing broadened bands as well as a significant shoulder at high kinetic energy. Qualitative considerations as well as ab initio calculations explain this shoulder to be due to delocalized final states in which the two valence holes are mostly located at different water molecules. The ab initio calculations show that valence hole configurations with both valence holes at the core-ionized water molecule are admixed to these final states and give rise to their intensity in the AES. Density-functional investigations of model systems for the doubly ionized final states--the water dimer and a 20-molecule water cluster--were performed to analyze the localization of the two valence holes in the electronic ground states. Whereas these holes are preferentially located at the same water molecule in the dimer, they are delocalized in the cluster showing a preference of the holes for surface molecules. The calculated double-ionization potential of the cluster (22.1 eV) is in reasonable agreement with the low-energy limit of the delocalized hole shoulder in the AES.
We present photoluminescence spectra and excited state decay rates of a series of diamondoids, which represent molecular structural analogues to hydrogen-passivated bulk diamond. Specific isomers of the five smallest diamondoids (adamantane-pentamantane) have been brought into the gas phase and irradiated with synchrotron radiation. All investigated compounds show intrinsic photoluminescence in the ultraviolet spectral region. The emission spectra exhibit pronounced vibrational fine structure which is analyzed using quantum chemical calculations. We show that the geometrical relaxation of the first excited state of adamantane, exhibiting Rydberg character, leads to the loss of T d symmetry. The luminescence of adamantane is attributed to a transition from the delocalized first excited state into different vibrational modes of the electronic ground state. Similar geometrical changes of the excited state structure have also been identified in the other investigated diamondoids. The excited state decay rates show a clear dependence on the size of the diamondoid, but are independent of the particle geometry, further indicating a loss of particle symmetry upon electronic excitation.
We investigated the changes in electronic structures induced by chemical functionalization of the five smallest diamondoids using valence photoelectron spectroscopy. Through the variation of three parameters, namely functional group (thiol, hydroxy, and amino), host cluster size (adamantane, diamantane, triamantane, [121]tetramantane, and [1(2,3)4]pentamantane), and functionalization site (apical and medial) we are able to determine to what degree these affect the electronic structures of the overall systems. We show that unlike, for example, in the case of halobenzenes, the ionization potential does not show a linear dependence on the electronegativity of the functional group. Instead, a linear correlation exists between the HOMO-1 ionization potential and the functional group electronegativity. This is due to localization of the HOMO on the functional group and the HOMO-1 on the diamondoid cage. Density functional theory supports our interpretations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.