We describe the spin-Hall effect of light (as well as the angular Goos-Hänchen effect) at a tilted linear-dichroic plate, such as a usual linear polarizer. Although the spin-Hall effect at a tilted polarizer was previous associated with the geometric spin-Hall effect of light (which was contrasted to the regular spin-Hall effect) [J. Korger et al., Phys. Rev. Lett. 112, 113902 (2014)], we show that the effect is actually an example of the regular spin-Hall effect that occurs at tilted anisotropic plates [K. Y. Bliokh et al., Optica 3, 1039 (2016)]. Moreover, our approach reveals the angular spin-Hall shift, which is absent in the "geometric" approach. We verify our theory experimentally using the method of quantum weak measurements.