In space, thin boundaries separating plasmas with different properties serve as a free energy source for various plasma instabilities and determine the global dynamics of large‐scale systems. In planetary magnetopauses and shock waves, classical examples of such boundaries, the magnetic field makes a significant contribution to the pressure balance and plasma dynamics. The configuration and properties of such boundaries have been well investigated and modeled. However, much less is known about boundaries that form between demagnetized plasmas where the magnetic field is not important for pressure balance. The most accessible example of such a plasma boundary is the equatorial boundary layer of the Earth's distant magnetotail. Rather, limited measurements since its first encounter in the late 1970s by the International Sun‐Earth Explorer‐3 spacecraft revealed the basic properties of this boundary, but its statistical properties and structure have not been studied to date. In this study, we use Geotail and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) missions to investigate the equatorial boundary layer from lunar orbit (∼55 Earth radii, RE, downtail) to as far downtail as ∼200 RE. Although the magnetic field has almost no effect on the structure of the boundary layer, the layer separates well the hot, rarefied plasma sheet from dense cold magnetosheath plasmas. We suggest that the most important role in plasma separation is played by polarization electric fields, which modify the efficiency of magnetosheath ion penetration into the plasma sheet. We also show that the total energies (bulk flow plus thermal) of plasma sheet ions and magnetosheath ions are very similar; that is, magnetosheath ion thermalization (e.g., via ion scattering by magnetic field fluctuations) is sufficient to produce hot plasma sheet ions without any additional acceleration.