Internal solitary waves in the South China Sea have attracted attention because of their large amplitude and high rate of occurrence. Internal solitary waves have a substantial influence on underwater sound propagation and ambient noise. However, there have seldom been reports on the noise they cause. In this paper, we conducted an internal solitary waves cooperative observation experiment in the South China Sea in 2016. We analyzed the temperature, flow velocity and noise changes induced by internal solitary waves. The power spectra of noise generated by internal solitary waves at frequencies below 100 Hz was almost 20 dB higher than ambient noise. The observed low-frequency noise had uniform harmonics. Combined with the changes of flow velocity, we interpreted the low frequency noise as flow noise induced by vortex-induced vibration of internal solitary waves flowing past the cable mooring system. The noise spectra were related to the position of the cable where the hydrophone was mounted. The closer they were to the middle of the cable, the greater the vibration amplitude, and the stronger the noise. This study provided a passive acoustic monitoring and warning method for high marine currents.