Anomalously large, transient fluctuations of acoustical noise intensity, up to 4–5 orders of magnitude above the background, were observed with single-hydrophone receiver units (SHRUs) and on the L-shaped horizontal and vertical line array of hydrophones (HVLA) in the Shallow Water 2006 experiment on the continental shelf off New Jersey. Here, temporal and spatial properties of these noise bursts are investigated. As tidally generated nonlinear internal waves (NIWs) move across the site of the experiment from the shelf break toward the coast, they form trains of localized, soliton-like waves with up to 25–35 m displacement of isopycnal surfaces. The NIW trains consecutively cross the positions of five SHRUs and HVLA that are located about 5–8 km from each other along a line perpendicular to the coast. The noise bursts were observed when a NIW train passed through locations of the corresponding acoustic receivers. Turbulence of the water flow, saltation, and bedload of marine sediments were the dominant causes of the acoustic noise bursts caused by NIWs at different frequency bands. On near-bottom hydrophones, the most energetic part of the observed noise bursts is attributed to collisions of suspended sediment particles with each other, the sensor, and the seafloor.
We report herein an underwater biological chorus coming from the margin of the New Jersey Atlantic continental shelf that we tentatively attribute to a species of fish. The chorus occurred every night for over a month during the Shallow Water 2006 experiment and covers the frequency band 150–4,800 Hz, with maximum intensity in the band from 1450 to 2,000 Hz. Remarkable intensity peaks occurred at 500, 725, 960, 1,215, 1,465, 1,700, and 1,920 Hz, rising to as much as 20 dB above the background noise without the chorus. The chorus begins at sunset and reaches its maximum intensity within an hour, following which it weakens slightly and then gradually climbs again to a peak before sunrise, at which point it quickly weakens and disappears. Its frequency-domain characteristics and the nocturnal timing are reminiscent of sound produced by underwater animals. The intensity of the chorus weakens along the across-shelf path going shoreward, which indicates that the chorus originates from the margin of the continental shelf rather than from the coastal zone, as is generally considered. The chorus contains a single type of acoustic signal that takes the form of double-pulse bursts that last about 8.7 ms, with each pulse containing several acoustic cycles. The time interval between successive bursts varies from 1.5 to 1.9 s. Signals containing a number of bursts vary in length from tens to hundreds of seconds. Although it is impossible to determine the fish species responsible for the chorus, its characteristics, including its low frequency and intensity, its single type of short-duration sound signal, and its multiple peaks in the frequency domain, are all consistent with the general characteristics of fish sounds.
A specific mechanism of mode coupling in a waveguide propagation is studied when two range-dependent eigenvalues approach each other. This phenomenon is analogous to the so-called quasi-crossing of states in atomic physics (Landau–Zener theory). It is considered for the sound wave propagation in a coastal wedge in the presence of a sound-speed profile. The change in mode composition and the corresponding spatial variability of the sound field are analyzed by using modes coupling equations and the parabolic equation with a field decomposition over adiabatic modes, respectively.
Recent paper of authors [J. Acoust. Soc. Am. 145(3, Pt. 2), 1670 (2019)] reported observations of repeated increase in acoustic noise intensity during passage of trains of nonlinear internal gravity waves. Periodic increases of pressure fluctuations by up to 35–40 dB in the frequency band from 10 to 5000 Hz were recorded on multiple near-bottom hydrophones during Shallow Water 2006 experiment. The present paper extends the earlier analysis to a more diverse set of nonlinear internal wave events by exploiting the acoustic data obtained at sites with a wider range of water depths and over a longer observation period. Three distinct physical mechanisms are identified, which are responsible for increased noise in different frequency bands. The observed noise bursts are attributed to turbulence of the water flow past hydrophones, sediment transport, and sediment saltation. Correlation between the velocity of the internal tide-induced near-bottom currents and noise intensity at low and mid-frequencies is investigated. [Work supported by ONR, NSF, and BSF.]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.