The initial stage of abnormal grain growth of the aluminum alloy 5052 has been investigated using electron back-scattered diffraction to analyze the characteristic of misorientations of the penetrating morphology at the growth front. Among the 84 penetrating morphologies examined, none of the penetrated grain boundaries has low angles or coincidence site lattice (CSL) relations, whereas 66 penetrating grain boundaries have low angles or CSL relations. These results strongly suggest that the penetrating morphologies should result from triple-junction wetting.