Natural enemies shape the fate of species at both ecological and evolutionary time scales. While the effects of predators, parasitoids, and viruses on insects are well documented, much less is known about the ecological and evolutionary role of entomopathogenic fungi. In particular, it is unclear to which extent may the spatiotemporal distribution patterns of these pathogens create selective pressures on ecological traits of herbivorous insects. In the present study, we reared three lepidopteran species in semi‐natural conditions in a European hemiboreal forest habitat. We studied the probability of the insects to die from fungal infection as a function of insect species, food plant, study site, (manipulated) condition of the larvae, and the phenological phase. The prevalence of entomopathogenic fungi remained low to moderate with the value consistently below 10% across the subsets of the data while as many as 23 fungal species, primarily belonging to the families Cordycipitaceae, Aspergillaceae, and Nectriaceae, were recorded. There were no major differences among the insect species in prevalence of the infections or in the structure of associated fungal assemblages. The family Cordycipitaceae, comprising mainly obligatory entomopathogens, dominated among the pathogens of pupae but not among the pathogens of larvae. Overall, there was evidence for a relatively weak impact of the studied ecological factors on the probability to be infected by a fungal pathogen; there were no effects of food plant, study site, or phenology which would be consistent over the study species and developmental stages of the insects. Nevertheless, when the prevalence of particular fungal taxa was studied,
Akanthomyces muscarius
was found infecting insects fed with leaves of only one of the food plant,
Betula
spp. Feeding on a particular plant taxon can thus have specific fitness costs. This demonstrates that fungus‐mediated effects on insect life history traits are possible and deserve attention.