The effects of chronic dietary acid loads on shifts in bone mineral reserves and physiological concentrations of cations and anions in extracellular fluids were assessed in growing swine. Four trials were conducted with a total of 38 (8.16 +/- 0.30 kg, mean +/- SEM) Large White x Landrace x Duroc pigs randomly assigned to one of three dietary treatments. Semipurified diets, fed for 13 to 17 d, provided an analyzed dietary electrolyte balance (dEB, meq/kg diet = Na+ + K+ - Cl-) of -35, 112, and 212 for the acidogenic, control, and alkalinogenic diets, respectively. Growth performance, arterial blood gas, serum chemistry, urine pH, mineral balance, bone mineral content gain, bone-breaking strength, bone ash, and percentage of bone ash were determined. Dietary treatments created a range of metabolic acid loads without affecting (P > 0.10) growth or feed intake. Urine pH was 5.71, 6.02, and 7.65 +/- 0.48 (mean +/- SEM) and arterial blood pH was 7.478, 7.485, and 7.526 +/- 0.006 for pigs fed acidogenic, control, and alkalinogenic treatments, respectively. A lower dEB resulted in an increased (P < 0.001) apparent Cl- retention (106.6, 55.4, and 41.2 +/- 6.3 meq/d), of which only 1.6% was accounted for by expansion of the extracellular fluid Cl- pool as calculated from serum Cl- (105.5, 103.4, 101.6 +/- 0.94 meq/L (mean +/- SEM) for pigs fed acidogenic, control, and alkalinogenic treatments, respectively. A lower dEB did not decrease (P > 0.10) bone mineral content gain, bone-breaking strength, bone ash, percentage of bone ash, or calcium and phosphate balance. In conclusion, bone mineral (phosphate) was not depleted to buffer the dietary acid load in growing pigs over a 3-wk period.