The use of robotic limb exoskeletons is growing fast either for rehabilitation purposes or in an aim to enhance human ability for lifting heavy objects or for walking for long distances without fatigue. The paper proposes a nonlinear optimal control approach for a lower-limb robotic exoskeleton. The method has been successfully tested so far on the control problem of several types of robotic manipulators and this paper shows that it can also provide an optimal solution to the control problem of limb robotic exoskeletons. To implement this control scheme, the state-space model of the lower-limb robotic exoskeleton undergoes first approximate linearization around a temporary operating point, through first-order Taylor series expansion and through the computation of the associated Jacobian matrices. To select the feedback gains of the H-infinity controller an algebraic Riccati equation is solved at each time-step of the control method. The global stability properties of the control loop are proven through Lyapunov analysis. Finally, to implement state estimation-based feedback control, the H-infinity Kalman Filter is used as a robust state estimator.