2018
DOI: 10.1515/mjpaa-2018-0015
|View full text |Cite
|
Sign up to set email alerts
|

Obstacle parabolic equations in non-reflexive Musielak-Orlicz spaces

Abstract: We prove existence of entropy solutions to general class of unilateral nonlinear parabolic equation in inhomogeneous Musielak-Orlicz spaces avoiding ceorcivity restrictions on the second lower order term. Namely, we consider$$\left\{ \matrix{ \matrix{ {u \ge \psi } \hfill & {{\rm{in}}} \hfill & {{Q_T},} \hfill \cr } \hfill \cr {{\partial b(x,u)} \over {\partial t}} - div\left( {a\left( {x,t,u,\nabla u} \right)} \right) = f + div\left( {g\left( {x,t,u} \right)} \right) \in {L^1}\left( {{Q_T}} \right).… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?