Pre-trained word embedding models are easily distributed and applied, as they alleviate users from the effort to train models themselves. With widely distributed models, it is important to ensure that they do not exhibit undesired behaviour, such as biases against population groups. For this purpose, we carry out an empirical study on evaluating the bias of 15 publicly available, pre-trained word embeddings model based on three training algorithms (GloVe, word2vec, and fastText) with regard to four bias metrics (WEAT, SEMBIAS, DIRECT BIAS, and ECT). The choice of word embedding models and bias metrics is motivated by a literature survey over 37 publications which quantified bias on pre-trained word embeddings. Our results indicate that fastText is the least biased model (in 8 out of 12 cases) and small vector lengths lead to a higher bias.