App Store Analysis studies information about applications obtained from app stores. App stores provide a wealth of information derived from users that would not exist had the applications been distributed via previous software deployment methods. App Store Analysis combines this non-technical information with technical information to learn trends and behaviours within these forms of software repositories. Findings from App Store Analysis have a direct and actionable impact on the software teams that develop software for app stores, and have led to techniques for requirements engineering, release planning, software design, security and testing. This survey describes and compares the areas of research that have been explored thus far, drawing out common aspects, trends and directions future research should take to address open problems and challenges.
We introduce a bi-objective effort estimation algorithm that combines Confidence Interval Analysis and assessment of Mean Absolute Error. We evaluate our proposed algorithm on three different alternative formulations, baseline comparators and current state-of-the-art effort estimators applied to five real-world datasets from the PROMISE repository, involving 724 different software projects in total. The results reveal that our algorithm outperforms the baseline, state-of-the-art and all three alternative formulations, statistically significantly (p < 0.001) and with large effect size (Â12 ≥ 0.9) over all five datasets. We also provide evidence that our algorithm creates a new state-of-the-art, which lies within currently claimed industrial human-expert-based thresholds, thereby demonstrating that our findings have actionable conclusions for practicing software engineers.
Recent work on genetic-programming-based approaches to automatic program patching have relied on the insight that the content of new code can often be assembled out of fragments of code that already exist in the code base. This insight has been dubbed the plastic surgery hypothesis; successful, well-known automatic repair tools such as GenProg rest on this hypothesis, but it has never been validated. We formalize and validate the plastic surgery hypothesis and empirically measure the extent to which raw material for changes actually already exists in projects. In this paper, we mount a large-scale study of several large Java projects, and examine a history of 15,723 commits to determine the extent to which these commits are graftable, i.e., can be reconstituted from existing code, and find an encouraging degree of graftability, surprisingly independent of commit size and type of commit. For example, we find that changes are 43% graftable from the exact version of the software being changed. With a view to investigating the difficulty of finding these grafts, we study the abundance of such grafts in three possible sources: the immediately previous version, prior history, and other projects. We also examine the contiguity or chunking of these grafts, and the degree to which grafts can be found in the same file. Our results are quite promising and suggest an optimistic future for automatic program patching methods that search for raw material in already extant code in the project being patched.
Abstract-Software Engineering and development is wellknown to suffer from unplanned overtime, which causes stress and illness in engineers and can lead to poor quality software with higher defects. In this paper, we introduce a multi-objective decision support approach to help balance project risks and duration against overtime, so that software engineers can better plan overtime. We evaluate our approach on 6 real world software projects, drawn from 3 organisations using 3 standard evaluation measures and 3 different approaches to risk assessment. Our results show that our approach was significantly better (p < 0.05) than standard multi-objective search in 76% of experiments (with high Cohen effect size in 85% of these) and was significantly better than currently used overtime planning strategies in 100% of experiments (with high effect size in all). We also show how our approach provides actionable overtime planning results and investigate the impact of the three different forms of risk assessment.
Previous work on vulnerability prediction assume that predictive models are trained with respect to perfect labelling information (includes labels from future, as yet undiscovered vulnerabilities). In this paper we present results from a comprehensive empirical study of 1,898 real-world vulnerabilities reported in 74 releases of three security-critical open source systems (Linux Kernel, OpenSSL and Wiresark). Our study investigates the effectiveness of three previously proposed vulnerability prediction approaches, in two settings: with and without the unrealistic labelling assumption. The results reveal that the unrealistic labelling assumption can profoundly mislead the scientific conclusions drawn; suggesting highly effective and deployable prediction results vanish when we fully account for realistically available labelling in the experimental methodology. More precisely, MCC mean values of predictive effectiveness drop from 0.77, 0.65 and 0.43 to 0.08, 0.22, 0.10 for Linux Kernel, OpenSSL and Wiresark, respectively. Similar results are also obtained for precision, recall and other assessments of predictive efficacy. The community therefore needs to upgrade experimental and empirical methodology for vulnerability prediction evaluation and development to ensure robust and actionable scientific findings. CCS CONCEPTS • Software and its engineering → Software defect analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.