This paper reviews the second challenge on spectral reconstruction from RGB images, i.e., the recovery of wholescene hyperspectral (HS) information from a 3-channel RGB image. As in the previous challenge, two tracks were provided: (i) a "Clean" track where HS images are estimated from noise-free RGBs, the RGB images are themselves calculated numerically using the ground-truth HS images and supplied spectral sensitivity functions (ii) a "Real World" track, simulating capture by an uncalibrated and unknown camera, where the HS images are recovered from noisy JPEG-compressed RGB images. A new, larger-than-ever, natural hyperspectral image data set is presented, containing a total of 510 HS images. The Clean and Real World tracks had 103 and 78 registered participants respectively, with 14 teams competing in the final testing phase. A description of the proposed methods, alongside their challenge scores and an extensive evaluation of top performing methods is also provided. They gauge the state-of-the-art in spectral reconstruction from an RGB image.
Abstract-Software Engineering and development is wellknown to suffer from unplanned overtime, which causes stress and illness in engineers and can lead to poor quality software with higher defects. In this paper, we introduce a multi-objective decision support approach to help balance project risks and duration against overtime, so that software engineers can better plan overtime. We evaluate our approach on 6 real world software projects, drawn from 3 organisations using 3 standard evaluation measures and 3 different approaches to risk assessment. Our results show that our approach was significantly better (p < 0.05) than standard multi-objective search in 76% of experiments (with high Cohen effect size in 85% of these) and was significantly better than currently used overtime planning strategies in 100% of experiments (with high effect size in all). We also show how our approach provides actionable overtime planning results and investigate the impact of the three different forms of risk assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.