Recent studies have shown that nitrogen doping of carbon nanotubes (CNTs) can lead to the formation of piezoelectric properties in them, not characteristic of pure CNTs. In this work, nitrogen-doped CNTs were grown by plasma-enhanced chemical vapor deposition and the effect of the aspect ratio of the nanotube length to its diameter on its piezoelectric coefficient [Formula: see text] was shown. It was observed that as the aspect ratio of the nanotube increased from 7 to 21, the value of [Formula: see text] increased linearly from 7.3 to 10.7 pm/V. This dependence is presumably due to an increase in curvature-induced polarization because of an increase in the curvature and the number of bamboo-like “bridges” in the nanotube cavity formed as a result of the incorporation of pyrrole-like nitrogen into the nanotube structure. The obtained results can be used in the development of promising elements of nanopiezotronics (nanogenerators, memory elements, and strain sensors).