Due to the environmental impact of using fossil fuels, alternatives for the generation of biofuels are being studied. An option for this problem is to obtain biodiesel from recycled vegetable oil. Studies show that basic homogeneous catalysis has advantages such as speed over other types of catalysis. However, most of these studies are conducted with unused or little-used oils. Therefore, this study aims to obtain biodiesel from recycled vegetable oil collected from municipal oil collection centers by transesterification applying NaOH or KOH as catalysts. The used oil was filtered, washed, and dried to remove impurities. The transesterification reaction catalyzed with NaOH and KOH was carried out; each catalyst was tested at two concentrations: 0.5% and 1% w/w. All reactions were carried out at 55 °C, 350 rpm, methanol, and alcohol/oil ratio of 6/1 for 1.5 h. The best yield was found with the KOH with a concentration of 0.5%. The biodiesel obtained presented the following properties: density of 0.8807 g/mL, a viscosity of 4.694 mm2/s, an acid number of 0.355 mg KOH/g, and corrosion 1a, a calorific value of 39,726 J/g, and a FAME of 93%.