Figure 1. This paper introduces Deep Structured Implicit Functions, a 3D shape representation that decomposes an input shape (mesh on left in every triplet) into a structured set of shape elements (colored ellipses on right) whose contributions to an implicit surface reconstruction (middle) are represented by latent vectors decoded by a deep network.
AbstractThe goal of this project is to learn a 3D shape representation that enables accurate surface reconstruction, compact storage, efficient computation, consistency for similar shapes, generalization across diverse shape categories, and inference from depth camera observations. Towards this end, we introduce Deep Structural Implicit Functions (DSIF), a 3D shape representation that decomposes space into a structured set of local deep implicit functions. We provide networks that infer the space decomposition and local deep implicit functions from a 3D mesh or posed depth image. During experiments, we find that it provides 10.3 points higher surface reconstruction accuracy (F-Score) than the state-of-the-art (OccNet), while requiring fewer than 1% of the network parameters. Experiments on posed depth image completion and generalization to unseen classes show 15.8 and 17.8 point improvements over the state-of-the-art, while producing a structured 3D representation for each input with consistency across diverse shape collections.