We present a method for training a regression network from image pixels to 3D morphable model coordinates using only unlabeled photographs. The training loss is based on features from a facial recognition network, computed onthe-fly by rendering the predicted faces with a differentiable renderer. To make training from features feasible and avoid network fooling effects, we introduce three objectives: a batch distribution loss that encourages the output distribution to match the distribution of the morphable model, a loopback loss that ensures the network can correctly reinterpret its own output, and a multi-view identity loss that compares the features of the predicted 3D face and the input photograph from multiple viewing angles. We train a regression network using these objectives, a set of unlabeled photographs, and the morphable model itself, and demonstrate state-of-the-art results. nition network [25] into identity parameters for the Basel 2017 Morphable Face Model [8].to-image autoencoder with a fixed, morphable-model-based decoder and an image-based loss [28]. This paper presents a method for training a regression network that removes both the need for supervised training data and the reliance on inverse rendering to reproduce image pixels. Instead, the network learns to minimize a loss based on the facial identity features produced by a face recognition network such as VGG-Face [17] or Google's FaceNet [25]. These features are robust to pose, expression, lighting, and even non-photorealistic inputs. We exploit this 1 arXiv:1806.06098v1 [cs.CV]
Figure 1. This paper introduces Deep Structured Implicit Functions, a 3D shape representation that decomposes an input shape (mesh on left in every triplet) into a structured set of shape elements (colored ellipses on right) whose contributions to an implicit surface reconstruction (middle) are represented by latent vectors decoded by a deep network. AbstractThe goal of this project is to learn a 3D shape representation that enables accurate surface reconstruction, compact storage, efficient computation, consistency for similar shapes, generalization across diverse shape categories, and inference from depth camera observations. Towards this end, we introduce Deep Structural Implicit Functions (DSIF), a 3D shape representation that decomposes space into a structured set of local deep implicit functions. We provide networks that infer the space decomposition and local deep implicit functions from a 3D mesh or posed depth image. During experiments, we find that it provides 10.3 points higher surface reconstruction accuracy (F-Score) than the state-of-the-art (OccNet), while requiring fewer than 1% of the network parameters. Experiments on posed depth image completion and generalization to unseen classes show 15.8 and 17.8 point improvements over the state-of-the-art, while producing a structured 3D representation for each input with consistency across diverse shape collections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.