Exosomes are nanoscale extracellular vesicles that play an important role in many biological processes, including intercellular communications, antigen presentation, and the transport of proteins, RNA, and other molecules. Recently there has been significant interest in exosome-related fundamental research, seeking new exosomebased biomarkers for health monitoring and disease diagnoses. Here, we report a separation method based on acoustofluidics (i.e., the integration of acoustics and microfluidics) to isolate exosomes directly from whole blood in a label-free and contactfree manner. This acoustofluidic platform consists of two modules: a microscale cell-removal module that first removes larger blood components, followed by extracellular vesicle subgroup separation in the exosome-isolation module. In the cell-removal module, we demonstrate the isolation of 110-nm particles from a mixture of micro-and nanosized particles with a yield greater than 99%. In the exosome-isolation module, we isolate exosomes from an extracellular vesicle mixture with a purity of 98.4%. Integrating the two acoustofluidic modules onto a single chip, we isolated exosomes from whole blood with a blood cell removal rate of over 99.999%. With its ability to perform rapid, biocompatible, label-free, contactfree, and continuous-flow exosome isolation, the integrated acoustofluidic device offers a unique approach to investigate the role of exosomes in the onset and progression of human diseases with potential applications in health monitoring, medical diagnosis, targeted drug delivery, and personalized medicine. extracellular vesicles | exosomes | blood-borne vesicles | surface acoustic waves | acoustic tweezers
Toward the pursuit of high-performance Ni 2+ /Co 2+ /Fe 3+relevant oxygen evolution reaction (OER) electrocatalysts, the modulation of local electronic structure of the active metal sites provides the fundamental motif, which could be achieved either through direct modifications of local chemical environment or interfacial interaction with a second metal substrate which possesses high electronegativity (typically noble metal Au). Herein, we report that the local electronic structure of Ni− Fe layered double hydroxide (LDH) could be favorably modulated through strong interfacial interactions with FeOOH nanoparticles (NPs). The biphasic and multiscale composites FeOOH/LDH demonstrated an increasingly pronounced synergy effect for OER catalysis when the average size of FeOOH NPs decreases from 18.0 to 2.0 nm. Particularly, the composite with average size of FeOOH NPs of 2.0 nm exhibited an overpotential of 174 mV at 10 mA cm −2 and a tafel slope of 27 mV dec −1 in 1.0 M KOH, outmatching all the noble and non-noble OER catalysts reported so far; it also operates smoothly in various stability tests. A mechanistic study based on XANES and EXAFS analysis, d.c. voltammetry and large amplitude Fourier Transformed a.c. voltammetry proved the presence of high-oxidation-state Fe (3+δ)+ sites with relatively short Fe (3+δ)+ −O bond from the highly unsaturated ultrafine FeOOH NPs which could reform the local electronic structure and favorably manipulate the electronic oxidation and thus electrocatalytic behaviors of the Ni 2+ species in the Ni−Fe LDH, hence leading to the easy formation, excellent OER activity, and extraordinary structural and catalytic stability. Our work puts an emphasis on the role of the solid−solid interfacial chemistry between a Ni−Fe LDH and a non-noble-metal component in engineering the local electronic structure of the active metal sites, which successfully pushed forward the catalytic activity of the well-studied Ni−Fe LDH far beyond its current limit in OER catalysis and opened up an avenue for rational design of OER electrocatalysts.
still susceptible to fatigue fracture during multiple-cycle mechanical loads, exhibiting fatigue threshold (i.e., the minimal fracture energy required for crack propagation under cyclic loads) below 100 J m −2 . [5][6][7] Therefore, the long-term reliability has substantially hampered the in practical utility of hydrogels and hydrogel-based devices, and remains a key challenge in these fields.On the contrary, biological tissues, such as skeletal muscles, tendon and cartilage, are well known for not only their superior strength, modulus, toughness, but also long-term robustness. [8][9][10] For example, skeletal muscles can sustain a high stress (i.e., 1 MPa) over millions cycles per year without fracture, exhibiting fatigue thresholds (i.e., the minimal fracture energy required for crack propagation under cyclic loads) over 1000 J m −2 , despite their high water content (≈80%). [8,11] Such unrivalled fatigue-resistance originates from their hierarchically-arranged collagen fibrillar micro/nanostructures. [10] Despite bioinspired construction of structural materials has been promising for the design of fatigue-resistant hydrogels, [12][13][14][15][16][17] how to produce hydrogel materials with unprecedented fatigue-resistance in a universal and viable manner still remains an open issue. More recently, fatigue-resistant hydrogels have been fabricated by engineering the crystalline domains, [12][13][14] fibril structures, [15,16] or mesoscale phase separation. [17] Ice-templated freeze-casting strategy has been utilized as a powerful technology to impart Nature builds biological materials from limited ingredients, however, with unparalleled mechanical performances compared to artificial materials, by harnessing inherent structures across multi-length-scales. In contrast, synthetic material design overwhelmingly focuses on developing new compounds, and fails to reproduce the mechanical properties of natural counterparts, such as fatigue resistance. Here, a simple yet general strategy to engineer conventional hydrogels with a more than 100-fold increase in fatigue thresholds is reported. This strategy is proven to be universally applicable to various species of hydrogel materials, including polysaccharides (i.e., alginate, cellulose), proteins (i.e., gelatin), synthetic polymers (i.e., poly(vinyl alcohol)s), as well as corresponding polymer composites. These fatigueresistant hydrogels exhibit a record-high fatigue threshold over most synthetic soft materials, making them low-cost, high-performance, and durable alternatives to soft materials used in those circumstances including robotics, artificial muscles, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.