Because they contain detailed individual-level data on various patient characteristics including their medical conditions and treatment histories, electronic health record (EHR) systems have been widely adopted as an efficient source for health research. Compared to data from a single health system, real-world data (RWD) from multiple clinical sites provide a larger and more generalizable population for accurate estimation, leading to better decision making for health care. However, due to concerns over protecting patient privacy, it is challenging to share individual patient-level data across sites in practice. To tackle this issue, many distributed algorithms have been developed to transfer summary-level statistics to derive accurate estimates. Nevertheless, many of these algorithms require multiple rounds of communication to exchange intermediate results across different sites. Among them, the One-shot Distributed Algorithm for Logistic regression (termed ODAL) was developed to reduce communication overhead while protecting patient privacy. In this paper, we applied the ODAL algorithm to RWD from a large clinical data research network-the OneFlorida Clinical Research Consortium and estimated the associations between risk factors and the diagnosis of opioid use disorder (OUD) among individuals who received at least one opioid prescription. The ODAL algorithm provided consistent findings of the associated risk factors and yielded better estimates than meta- analysis.