This paper presents a novel driving circuit for the high-side switch of high voltage buck regulators. A 40 V P-channel lateral double-diffused metal—oxide—semiconductor device whose drain—source and drain—gate can resist high voltage, but whose source—gate must be less than 5 V, is used as the high-side switch. The proposed driving circuit provides a stable and accurate 5 V driving voltage for protecting the high-side switch from breakdown and achieving low on-resistance and simple loop stability design. Furthermore, the driving circuit with excellent driving capability decreases the switching loss and dead time is also developed to reduce the shoot-through current loss. Therefore, power efficiency is greatly improved. An asynchronous buck regulator with the proposed technique has been successfully fabricated by a 0.35 μm CDMOS technology. From the results, compared with the accuracy of 16.38% of the driving voltage in conventional design, a high accuracy of 1.38% is achieved in this work. Moreover, power efficiency is up to 95% at 12 V input and 5 V output.