“…For text classification using the machine-learning approach, researchers have used several models to classify whether a text contain hate speech and abusive language or not including Naive Bayes (NB) [5] , [44] , [1] , [20] , [40] , [4] , [24] , [25] , [38] , Support Vector Machine (SVM) [5] , [34] , [44] , [1] , [20] , [40] , [7] , [24] , [25] , [38] , [27] , Logistic Regression (LR) [5] , [39] , [44] , [40] , [7] , [27] , Decision Tree (DT) [44] , Random Forest Decision Tree (RFDT) [5] , [39] , [1] , [20] , [7] , [24] , [25] , [38] , [27] , k-Nearest Neighbor (kNN) [34] , [44] , Latent Semantic Analysis (LSA) [3] , Maximum Entropy [20] , [19] , and Artificial Neural Network (ANN) [49] . These machine-learning models are usually combined with several text features including word n-grams [5] , [39] , [1] , [40] , [7] , [49] , [4] , [24] , [25] , [38] , [27] , character n-grams [5] , [39] , [1] , [40] , ...…”